8/26 | 1 | M | 1 | Introduction to robotics | Ch1, Ch2 | | |
8/28 | | W | 2 | Motion planning for point robots | Ch8, Ch9.1-3, C.1, C.2 | HW1 | |
9/2 | 2 | M | — | | | | |
9/4 | | W | 3 | Mobile robot planning, C-space | Ch9.4-6, Ch.11.1 | | |
9/9 | 3 | M | 4 | Mobile robot planning, C-space, cont | | | |
9/11 | | W | 5 | Sampling-based motion planning | Ch10.1-3 | HW2 | HW1 |
9/16 | 4 | M | 6 | Sampling-based motion planning pt 2 | Ch10.4-6 | | |
9/18 | | W | 7 | Kinodynamic motion planning | Ch11.1-2 | | |
9/23 | 5 | M | 8 | Kinodynamic motion planning (cont) | | | |
9/25 | | W | 9 | Trajectory optimization | Ch17.1,17.4-6 | HW3 | HW2 |
9/30 | 6 | M | 10 | Trajectory optimization pt 2 | Ch17.1,17.4-6 | | |
10/2 | | W | 11 | Constrained trajectory optimization | | | |
10/7 | 7 | M | 12 | Constrained trajectory optimization (cont) | | | |
10/9 | | W | 13 | Real time planning & control | | | HW3 |
10/14 | 8 | M | 14 | State estimation and uncertainty | A3, PR 2.1-3 | HW4 | |
10/16 | | W | 15 | Probabilistic Gaussian filtering | PR 2.4-6, 3.1. An Introduction to the Kalman Filter | | |
10/21 | 9 | M | 16 | Probabilistic filtering | PR 3.2-3, An Introduction to the Kalman Filter | | |
10/23 | | W | 17 | Particle filtering | PR 4 | | |
10/28 | 10 | M | 18 | System ID and prediction | | HW5 | HW4 |
10/30 | | W | 19 | System ID and prediction, cont | | | |
11/4 | 11 | M | 20 | Rigid registration | CVAA 11.1-3 | | |
11/6 | | W | 21 | 3D mapping | PR 7.1-4 | | |
11/11 | 12 | M | 22 | SLAM | PR 7.5-6, 8.1-3 | HW6 | HW5 |
11/13 | | W | 23 | Integrating planning and perception | | | |
11/18 | 13 | M | 24 | Planning under uncertainty | | | |
11/20 | | W | 25 | Planning with partial observability | | | |
11/25 | 14 | M | — | | | | |
11/27 | | W | — | | | | |
12/2 | 15 | M | 26 | Reinforcement learning | | | HW6 |
12/9 | | W | 27 | Reinforcement learning, cont | | | |